Системы и сети связи
  Гаджеты Психология отношений Здоровье Библиотека  
Многоканальные телекоммуникационные системы
Введение в цифровой способ передачи сигналов
Преобразование сигналов в СЦТС
Мультиплексоры СЦТС
Технология WiMAX
Общие сведения о WiMAX
Передача сигналов в WiMAX
Многоантенные технологии в WiMAX-системах связи
Средства обеспечения безопасности
Описание стандарта IEEE 802.16-2004
Физический уровень
Сведения о стандарте IEEE 802.16e
Оборудование WiMAX
Технология LTE
Введение в LTE
Понятие радиоинтерфейса
Средства связи с подвижными объектами
Основы построения ССсПО
Кодирование речи в ССсПО
Цифровая модуляция
Модели распространения радиоволн
Модели физического уровня беспроводных сетей
Канальный уровень беспроводных сетей
Основные характерис- тики систем связи с ПО
GSM-900 и DSC-1800
CDMA
Хэндовер
Цифровые системы второго поколения
Транкинговые системы
Беспроводные системы
Цифровые радио- релейные линии связи
Основные положения
Системы спутниковой связи с ПО
Принципы построения
Зоны обслуживания
 

Средства связи с подвижными объектами: Методы цифровой модуляции в системах связи с подвижными объектами


1. Методы цифровой модуляции. Цифровая модуляция.
2. Методы цифровой модуляции. Фазовая модуляция:
  - М-ичные системы модуляции.
  - Двоичная фазовая модуляция.
  - Квадратурная фазовая модуляция (QPSK).
  - Квадратурная фазовая модуляция со смещением.
  - ФМ-8 сигналы (8PSK).
  - п/4-квадратурная относительная фазовая модуляция.

3. Методы цифровой модуляции. Частотная модуляция:
  - Сигналы с постоянной огибающей.
  - Двоичная частотная манипуляция.
  - Частотная манипуляция с минимальным сдвигом.
  - Гауссовская частотная манипуляция с минимальным сдвигом.
  - Квадратурная амплитудная модуляция.
  - М-ичная частотная модуляция.

4. Методы цифровой модуляции. Модуляция с расширением спектра:
  - Прямое расширение спектра.
  - Расширение спектра скачками по частоте.
  - Расширение спектра скачками по времени.

Двоичная частотная манипуляция


        При двоичной частотной манипуляции частота несущего колебания с постоянной амплитудой может иметь два возможных значения и изменяется скачками в соответствии со значениями модулирующего сигнала. В общем случае ЧМ сигнал можно представить следующим образом:

        Более общий метод формирования ЧМ сигнала заключается в том, что используется один генератор несущего колебания, мгновенная частота которого изменяется в соответствии с изменениями модулирующего сигнала. Этот способ модуляции аналогичен методу формирования ЧМ сигнала при аналоговом модулирующем сигнале, однако в этом случае модулирующий сигнал является цифровым и принимает всего два возможных значения. Для такого радиосигнала можно записать

        На рис. 3.15 представлена функциональная схема устройства формирования ЧМ сигнала при двоичном модулирующем сигнале. Основным элементом этого модулятора является генератор гармонического несущего колебания, частота которого может управляться напряжением модулирующего сигнала (ГУН - генератор, управляемый напряжением).

        Поток информационных битов сначала преобразуется в модулирующий сигнал u(t) — последовательность прямоугольных импульсов положительной и отрицательной полярности, амплитуды которых выбираются такими, чтобы обеспечить требуемое значение индекса частотной модуляции

        где Fс=1/Tс обычно называют частотой манипуляции. Начальная фаза несущего колебания в каждом канальном символе в данном случае не определена; поэтому данный модулятор формирует некогерентный ЧМ сигнал. Полосовой фильтр ослабляет возможные внеполосные гармонические колебания, которые могут появиться из-за нелинейности динамической характеристики усилителя.
        На рис. 3.16 тонкими линиями изображена фазовая решетка ЧМ сигнала с непрерывной фазой. Жирной ломаной линией здесь представлена возможная фазовая траектория - отклонения мгновенной фазы сигнала от текущей фазы немодулированного несущего колебания. Эта траектория соответствует последовательности импульсов положительной и отрицательной полярности модулирующего сигнала, указанной на этом же рисунке вдоль оси времени.

        Отрезки траектории с положительным значением производной этой траектории по времени соответствуют более высокой частоте несущего колебания Fв = Fо + <>F, а отрезки с отрицательным значением производной - более низкой частоте Fн = Fо - <>F по сравнению с частотой немодулированного несущего колебания.

 
 
Motoking
ICQ: 489-725-489
E-mail: iMoto88@mail.ru