Системы и сети связи
  Гаджеты Психология отношений Здоровье Библиотека  
Многоканальные телекоммуникационные системы
Введение в цифровой способ передачи сигналов
Преобразование сигналов в СЦТС
Мультиплексоры СЦТС
Технология WiMAX
Общие сведения о WiMAX
Передача сигналов в WiMAX
Многоантенные технологии в WiMAX-системах связи
Средства обеспечения безопасности
Описание стандарта IEEE 802.16-2004
Физический уровень
Сведения о стандарте IEEE 802.16e
Оборудование WiMAX
Технология LTE
Введение в LTE
Понятие радиоинтерфейса
Средства связи с подвижными объектами
Основы построения ССсПО
Кодирование речи в ССсПО
Цифровая модуляция
Модели распространения радиоволн
Модели физического уровня беспроводных сетей
Канальный уровень беспроводных сетей
Основные характерис- тики систем связи с ПО
GSM-900 и DSC-1800
CDMA
Хэндовер
Цифровые системы второго поколения
Транкинговые системы
Беспроводные системы
Цифровые радио- релейные линии связи
Основные положения
Системы спутниковой связи с ПО
Принципы построения
Зоны обслуживания
 

Средства связи с подвижными объектами: Методы цифровой модуляции в системах связи с подвижными объектами


1. Методы цифровой модуляции. Цифровая модуляция.
2. Методы цифровой модуляции. Фазовая модуляция:
  - М-ичные системы модуляции.
  - Двоичная фазовая модуляция.
  - Квадратурная фазовая модуляция (QPSK).
  - Квадратурная фазовая модуляция со смещением.
  - ФМ-8 сигналы (8PSK).
  - п/4-квадратурная относительная фазовая модуляция.

3. Методы цифровой модуляции. Частотная модуляция:
  - Сигналы с постоянной огибающей.
  - Двоичная частотная манипуляция.
  - Частотная манипуляция с минимальным сдвигом.
  - Гауссовская частотная манипуляция с минимальным сдвигом.
  - Квадратурная амплитудная модуляция.
  - М-ичная частотная модуляция.

4. Методы цифровой модуляции. Модуляция с расширением спектра:
  - Прямое расширение спектра.
  - Расширение спектра скачками по частоте.
  - Расширение спектра скачками по времени.

Прямое расширение спектра


        На рис. 3.29 представлены графики спектров двух радиосигналов сотовых систем стандартов AMPS, GSM и IS-95. Сигнал с расширенным спектром используется только в системе стандарта IS-95. Заштрихованная фигура здесь изображает форму спектральной плотности мощности радиосигнала одного канала передачи. Передача информации по двум каналам осуществляется одновременно. В первых двух стандартах спектры разных каналов не перекрываются и используется частотное разделение каналов при приеме (МДЧР или FDMA); радиосигналы системы стандарта IS-95 передаются в одной и той же полосе частот, но их форма различна; в приемнике это различие используется для разделения каналов (МДКР или CDMA). Следует обратить внимание еще на одно свойство сигналов с расширенным спектром, которое иллюстрируется рис. 3.29, поскольку ширина спектра радиосигнала одного канала при кодовом разделении значительно больше ширины спектра сигналов при частотном разделении каналов, то при одинаковой излучаемой мощности этих радиосигналов спектральная плотность мощности сигнала IS-95 оказывается намного меньше.

        Перечислим некоторые свойства сигналов с прямым расширением спектра, наиболее важные с точки зрения организации множественного доступа в системах связи с подвижными объектами.
        • Множественный доступ. Если одновременно несколько абонентов используют канал передачи, то в канале одновременно присутствуют несколько сигналов с прямым расширением спектра. В приемнике сигнала конкретного абонента осуществляется обратная операция - свертывание сигнала этого абонента путем использования того же псевдослучайного сигнала, который был использован в передатчике этого абонента. Эта операция концентрирует мощность принимаемого широкополосного сигнала снова в узкой полосе частот, равной ширине спектра информационных символов. Если взаимная корреляционная функция между псевдослучайными сигналами данного абонента и других абонентов достаточно мала, то при когерентном приеме в информационную полосу приемника абонента попадет лишь незначительная доля мощности сигналов остальных абонентов. Сигнал конкретного абонента будет принят верно.
        • Многолучевая интерференция. Если псевдослучайный сигнал, используемый для расширения спектра имеет идеальную автокорреляционную функцию, значения которой вне интервала [-t0,+ t0] равны нулю, и если принимаемый сигнал и копия этого сигнала в другом луче сдвинуты во времени на величину, большую 2t0, то при сворачивании сигнала его копия может рассматриваться как мешающая интерференция, вносящая лишь малую долю мощности в информационную полосу.
        • Узкополосная помеха. При когерентном приеме в приемнике осуществляется умножение принятого сигнала на копию псевдослучайного сигнала, используемого для расширения спектра в передатчике. Следовательно, в приемнике будет осуществляться операция расширения спектра узкополосной помехи, аналогичная той, которая выполнялась с информационным сигналом в передатчике. Следовательно, спектр узкополосной помехи в приемнике будет расширен в В раз, где В - коэффициент расширения, так что в информационную полосу частот попадет лишь малая доля мощности помехи, в В раз меньше исходной мощности помехи.
        • Вероятность перехвата. Так как сигнал с прямым расширением спектра занимает всю полосу частот системы в течение все-то времени передачи, то его излучаемая мощность, приходящаяся на 1 Гц полосы, будет иметь очень малые значения. Следовательно, обнаружение такого сигнала является очень трудной задачей.

 
 
Motoking
ICQ: 489-725-489
E-mail: iMoto88@mail.ru